Project 1 Preview

Deep Learning–Based Carbon Credit Estimation

From Multispectral Satellite Imagery (Mangrove Carbon Mapper)


Project Overview

End-to-end deep learning system for automatic mangrove detection and carbon stock estimation from multispectral satellite imagery. Replaces manual GIS workflows with an AI pipeline:

  • Pixel-level mangrove segmentation
  • Area calculation from satellite images
  • Carbon stock & CO₂ equivalent estimation

Supports environmental monitoring and carbon credit verification (SDG 13 & SDG 15).

Core Contributions

  • Automated mangrove detection using deep learning
  • Segmentation to measurable carbon stock values
  • Full pipeline: image → mask → area → carbon estimate
  • Prototype web interface for visualization

AI & Modeling

  • U-Net++ segmentation
  • SAM2 for mask generation
  • Pixel-level classification
  • Image preprocessing & normalization
  • Area-based carbon estimation

Tech Stack

Deep Learning
  • PyTorch
  • U-Net++
  • SAM2
  • OpenCV
Geospatial & Image Processing
  • Multispectral satellite imagery
  • Image preprocessing pipeline
  • Area computation from pixel masks
Backend / System
  • Python
  • End-to-end model pipeline